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Abstract

We propose serial correlation-robust asymptotic confidence bands for the receiver op-

erating characteristic (ROC) curve and its functional, viz. the area under ROC curve

(AUC), estimated by quasi-maximum likelihood in the binormal model. Our simulation

experiments confirm that this new method performs fairly well in finite samples, and con-

fers an additional measure of robustness to non-normality. The conventional procedure

is found to be markedly undersized in terms of yielding empirical coverage probabili-

ties lower than the nominal level, especially when the serial correlation is strong. An

example from macroeconomic forecasting demonstrates the importance of accounting

for serial correlation when the probability forecasts for real GDP declines are evaluated

using ROC.
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1 Introduction

The receiver operating characteristic (ROC) curve is a popular diagnostic device, originally

proposed in signal detection theory, to assess the discriminatory performance of a continuous

variable representing a diagnostic test, a marker, or a classifier. The last few decades, fol-

lowing the pioneering work of Green and Swets (1966), have witnessed a remarkable growth

of research in this field. The surge in the number of articles related to ROC analysis is well

documented in Krzanowski and Hand (2009). Due to its ability to summarize all relevant in-

formation in an intuitive manner, ROC curve has received considerable attention from diverse

disciplines including biomedical informatics, computer science, epidemiology, meteorology,

and psychology. A general introduction to ROC methodology can be found in Fawcett (2006),

Pepe (2000), Swets et al. (2000), and Zhou et al. (2002).

In the finance and banking literature, ROC curve is also commonly employed as a tool to

measure the accuracy of a predictive model. Stein (2005) illustrated the use of the ROC curve

generated by a credit scoring model to yield an optimal cut-off and asset pricing strategy as

guidelines for a bank in its lending decisions. Blöchlinger and Leippold (2006) linked the

discriminatory power of a credit scoring model, as visualized by the area under an ROC

curve, with the market share, revenue, loss, and profit of a bank. Ravi and Pramodh (2008)

compared the performance of alternative neural networks to predict bankruptcy with respect

to the area under an ROC curve based on data of Spanish and Turkish banks.

In recent years, the ROC analysis has begun to draw increasing attention in the eco-

nomics profession, especially macroeconomic forecasting. Berge and Jordà (2011), utilizing

ROC curve, investigated certain issues with the business cycle indicators defined by the Na-

tional Bureau of Economic Research (NBER) in terms of their skill in classifying economic

activity into recessions and expansions. Lahiri and Wang (2013) noted that one important

but overlooked point in forecasting relatively uncommon events is the role of a threshold or

cut-off, and the usual skill measures of a binary classifier combine the true accuracy with

the implicit threshold. Drehmann and Juselius (2014) used ROC analysis to assess the per-
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formance of early warning indicators for emerging financial vulnerabilities in the banking

sectors. Lahiri and Yang (2013) integrated the ROC analysis into a unified framework of

forecast skill evaluation for a binary outcome, and surveyed a wide range of skill scores re-

lated to the ROC curve. Other important applications include the work of Cohen et al. (2009),

Gorr and Schneider (2011), and Jordà et al. (2011).

Most of the aforementioned literature concentrates on the application of the ROC curve

without paying much attention to different aspects of statistical inference. There are a few

exceptions that address this concern. Demidenko (2012) discussed the confidence interval

and confidence band in the parametric binormal model. Pepe (2003) derived various types

of confidence intervals when the ROC curve is estimated by nonsmoothing empirical meth-

ods. Hall et al. (2004) constructed confidence intervals and confidence bands for the ROC

curve estimated by nonparametric kernel smoothing, and suggested a parsimonious first or-

der asymptotic approximation. Macskassy et al. (2005) examined many of the approaches to

construct confidence bands for an ROC curve, and showed their empirical performance using

real-life examples.

To the best of our knowledge, no previous study has considered the impact of serial cor-

relation on the statistical inference for an ROC curve. Virtually all papers cited above assume

that the sample is independently and identically distributed (i.i.d.). This may make sense in

many cross-sectional designs, which are prevalent in epidemiology and medical diagnostics.

However, the legitimacy of this assumption is problematic in business and economics that are

often based on time series data. A similar issue arises in meteorology and many other areas as

well. The extant rich inferential procedures are not directly usable in this setting. Blaskowitz

and Herwartz (2014) and Pesaran and Timmermann (2009) have developed tests designed to

take care of the serial correlation while testing dependence among binary variables. Wilks

(2010) has shown that the failure to accommodate serial correlation will seriously underesti-

mate the standard error of the Brier Skill Score. Pesaran and Timmermann (2009) cited many

articles that deal with the effect of serial dependence on the chi-squared tests of independence

based on two-way contingency tables. Our paper parallels this literature in that we robustify

the current procedures to accommodate serial dependence in a parametric binormal ROC
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model. Though restrictive in some cases, the binormal specification is widely used and often

taken as a benchmark for comparison with more flexible semiparametric or nonparametric

counterparts. See Hanley (1988) and Swets (1986) to appreciate the remarkably robust fea-

tures of this model, and Lasko et al. (2005) and Devlin et al. (2013) for more recent analysis.

Major econometrics packages, like Stata, also provide built-in commands to implement this

model by assuming the data is i.i.d. The methodology described in this paper can be slightly

modified to cope with other parametric specifications in a straightforward way. See Satchell

and Xia (2008) for a number of such alternative parametric specifications for ROC analysis

in the context of scoring models in banking.

The rest of the paper is organized as follows: six types of asymptotic confidence bands

in the binormal model that are robust to serial correlation are constructed in Section 2. In

Section 3, results from a Monte Carlo experiment are reported to analyze the finite sample

properties of these confidence bands and their robustness to departures from normality. Sec-

tion 4 provides an empirical illustration using a widely used probability forecasts for real

GDP declines at two quarterly horizons. The paper concludes in Section 5 with suggestions

for future research. All mathematical proofs are provided in a supplementary appendix.

2 Construction of asymptotic confidence bands

2.1 The ROC curve and AUC

The ROC curve characterizes the capacity of a continuous predictor to distinguish between

two possible outcomes. Specifically, let Y be the continuous variable to predict Z, the 0/1

binary target variable. Given a threshold η, we assign an observation to group 1 if Y is above

η. Otherwise, it is assigned to group 0. Let the hit rate (H) or the sensitivity be the probability

that the observation is correctly classified when Z = 1, that is, P (Y > η|Z = 1), and the false

alarm rate (F) or (1-specificity) be the probability that the observation is misclassified when

Z = 0, that is, P (Y > η|Z = 0). Ideally, we hope H could be as large as possible and F as
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small as possible. Both of them are functions of η. In general, given the classifier Y , it is hard

to achieve a higher value of H without increasing F. The tradeoff between them is depicted by

plotting the pair (F,H) in a unit square for every η. The resulting ROC curve is an increasing

function from (0,0) to (1,1). Figure 1 presents three ROC curves. For each, the tradeoff

between H and F is visually reflected by the upward sloping shape of this curve. In terms of

classification performance, the upper-most curve dominates the middle curve, which in turn

dominates the lower-most one. Given the tradeoff as depicted in a particular ROC curve, a

decision maker can choose the optimal cut-off point for the continuous marker that would

minimize the number of misclassifications and the expected loss.

Figure 1: Three ROC curves obtained from binormal models

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F

H

Note that both H and F depend on the behavior of Y given Z = 1 and Z = 0 respectively, so

neither one is affected by the prevalence of the binary event in the population. In contrast, the

popular Brier Quadratic Probability Score (QPS), a probability analog of the mean squared

error, depends on P (Z = 1), which can be seen by observing E(Z−Y )2 = E(Z2)−2E(ZY )+

E(Y 2)=P (Z = 1)(1−2E(Y |Z = 1))+E(Y 2). Suppose Y is a naive forecast always reporting

the marginal probability of Z = 1, that is, Y = P (Z = 1). The QPS then reduces to P (Z =

1)(1−P (Z = 1)), which for rare events could be very close to zero, suggesting superior

forecast skill. The lack of discriminatory power of the classifier in this case is appropriately
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detected by the diagonal ROC curve in Figure 1.

Sometimes, we only need a single index to summarize all information contained in an

ROC curve. The area under an ROC curve (AUC) is probably the most commonly used

global index of diagnostic accuracy. It is the probability that, in a randomly selected pair of

values of the predictor from the two regimes (say, recessions and non-recessions), the value

of the predictor is more for the recession periods, cf. Bamber (1975). Values of AUC close

to one indicate a high diagnostic accuracy of the marker. Metz (1986) interpreted it as the

average hit rate for all underlying values of false alarm rates, and also as the average false

alarm rate for all values of hit rates, see also Lasko et al. (2005).

2.2 Asymptotic properties of the binormal estimator with serial corre-

lation

In this section, we develop a parametric approach to construct the asymptotic confidence

bands for an ROC curve based on the binormal model. However, we need to first introduce

some standard assumptions and asymptotic results with respect to the fundamental param-

eters of the binormal model. In this subsection, we establish the strong consistency and

asymptotic normality of the quasi-maximum likelihood estimator that allows for serial corre-

lation in the score functions. In Section 2.3, we present the asymptotic confidence bands for

the ROC curve with serially dependent data.

Our main results are built upon a few mild assumptions. Assumption 1 concerns the

probability law governing the observed binary outcomes and classifiers.

Assumption 1 (i) {Xt = (Yt ,Zt) : t = 1,2, ...} is a stochastic process on a complete probability

space (Ω,F ,P ), where Ω =×∞
t=1R2 and F is the Borel-σ field generated by the measurable

finite dimensional product cylinders; (ii) For some r′ > 1, {Xt} is a mixing sequence with

either uniform mixing coefficient φm or strong mixing coefficient αm of size 2r′/(r′−1); (iii)

{Xt} is strictly stationary; (iv) Zt ∼ Bernoulli(π∗), and ϑ(Yt) ∼ N(µ∗Z,(σ
∗
Z)

2) (Z = 1 or 0)

given Zt , where π∗ ∈ (0,1), θ∗ ≡ (µ∗1,(σ
∗
1)

2,µ∗0,(σ
∗
0)

2)′ is a point in R×R+×R×R+, and
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ϑ(·) is a real-valued strictly increasing function.

In standard ROC studies like those cited in Section 1, analysts often treat Zt as nonstochas-

tic. In these circumstances, Yt (or ϑ(Yt)) is assumed to have two distributions corresponding

to the two values of Zt . Furthermore, the assumption is made that the observations are inde-

pendent within the distribution as well as between distributions. This is a natural assumption

under a controlled experiment. For instance, in clinical trials, the analysts are able to design

an experiment to collect data recording the blood pressure (Yt) for people from two groups of

given sizes: diseased (Zt = 1) and nondiseased (Zt = 0). See Zhou et al. (2002) for exam-

ples of this sort. However, that Zt is fixed is questionable in observational studies, where the

recorded values of Yt and Zt are simultaneously determined as the realization of the under-

lying stochastic process. Assumption 1 specifies the joint distribution of Yt and Zt . 1(i) is a

technical assumption. 1(ii) allows for certain degree of serial correlation in {Xt}, as long as

its dependence shrinks towards zero at the stated rate. Independence is nested within 1(ii) as

a special case since independent sequence must be mixing of any size. Though not necessary

by itself, 1(iii) facilitates our asymptotic analysis substantially. What matters is that Xt must

be identically distributed for each t in order for the population ROC curve to be well defined.

1(iv) says that the functional form of ϑ(·) should be known a priori to transform Yt into a

mixture normal random variable. Among other things, this requires that the domain of ϑ(·)

must nest the range of Yt , and the range of ϑ(·) is unlimited in R. In our empirical appli-

cation in Section 4, Yt is the probability forecast. Thus any link function, like logit, probit

or log-log links, for a binary dependent response in the generalized linear model would be a

potential choice, see McCullagh and Nelder (1989). Alternatively, Faraggi and Reiser (2002)

suggested applying a Box-Cox type power transformation before using the normal distribu-

tion. This procedure greatly robustifies the binormal model, but invokes an additional step to

estimate the power parameter.

The binormal model assumes that {Xt} is i.i.d. with Zt ∼ Bernoulli(π1), and ϑ(Yt) ∼

N(µZ,σ
2
Z) (Z = 1 or 0) given Zt , where π1 ∈ (0,1), θ ≡ (µ1,σ

2
1,µ0,σ

2
0)
′ ∈ R× R+× R×

R+. It derives its name from the normal specification of the two conditional distributions of

ϑ(Yt). In view of 1(iv), the model correctly specifies the distribution of Xt for each t. This,
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however, does not rule out the possibility of dynamic misspecification. In the presence of

serial correlation as implicit in 1(ii), the distribution of ϑ(Yt) presumably depends on previous

observations of Xκ for all κ < t. Our main purpose here is to carry out the statistical inference

which would be robust with respect to the possible presence of serial correlation.

We form the conditional quasi-log-likelihood function based on a sample {Xt : t =

1,2, ...,T}:

lT (θ)≡
1
T

T

∑
t=1

(Zt ln( f (ϑ(Yt);µ1,σ
2
1))+(1−Zt)ln( f (ϑ(Yt);µ0,σ

2
0))), (1)

where f (·;µZ,σ
2
Z) is the density function of a normal random variable with mean µZ and

variance σ2
Z , for Z = 1 or 0. The quasi-maximum likelihood estimator (QMLE) θ̂ ≡

(µ̂1, σ̂
2
1, µ̂0, σ̂

2
0)
′ maximizes lT (θ). Given the normality assumption, θ̂ has the following ex-

plicit form

µ̂1 =
∑

T
t=1 Ztϑ(Yt)

∑
T
t=1 Zt

(2a)

σ̂
2
1 =

∑
T
t=1 Zt(ϑ(Yt)− µ̂1)

2

∑
T
t=1 Zt

(2b)

µ̂0 =
∑

T
t=1(1−Zt)ϑ(Yt)

∑
T
t=1(1−Zt)

(2c)

σ̂
2
0 =

∑
T
t=1(1−Zt)(ϑ(Yt)− µ̂0)

2

∑
T
t=1(1−Zt)

. (2d)

Thus, (µ̂k, σ̂
2
k) is the mean and variance for sub-sample of Zt = k (k = 1 or 0).

Theorem 1 Under Assumption 1, θ̂
a.s.→ θ∗, as T → ∞.

The strong consistency of θ̂ merely rests on the correct specification of the conditional

distribution of ϑ(Yt) given Zt alone. Consequently, one can view {Xt : t = 1,2, ...,T} as a ran-

dom sample and the parameters can be estimated in the usual fashion. Theorem 1 guarantees

that the resulting estimator approaches the true value asymptotically.

To show asymptotic normality of θ̂, we have to introduce additional notations. The score
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function for observation t is

st(θ)≡
∂(Zt ln( f (ϑ(Yt);µ1,σ

2
1))+(1−Zt)ln( f (ϑ(Yt);µ0,σ

2
0)))

∂θ
.

Define IT (θ)≡Var( 1√
T ∑

T
t=1 st(θ)), I∗T ≡ IT (θ

∗), J(θ)≡ E(∂st(θ)
∂θ

), and J∗ ≡ J(θ∗).

Assumption 2 The sequence {I∗T} is uniformly positive definite, i.e. I∗T is positive definite

for each T ∈ N and there exists ε > 0 and a natural number N(ε) such that |I∗T | > ε for all

T > N(ε).

Lemma 1 Under Assumptions 1 and 2, there exists a symmetric positive definite matrix I∗

such that I∗T → I∗ as T → ∞.

Theorem 2 Under Assumptions 1 and 2,
√

T (θ̂−θ∗)
d→ N(0,J∗−1I∗J∗−1).

2.3 Confidence bands for ROC curve

Based on Theorem 2, we can now get to the main objective of this paper, which is to derive the

asymptotic confidence bands for an ROC curve when the data could be serially correlated. We

first look at a particular point on the curve generated by fixing a threshold η. As mentioned

previously, we predict Zt to be equal to 1 whenever ϑ(Yt) > η. For this rule, the hit rate (H)

is the conditional probability of correct classification given Zt = 1, and the false alarm rate

(F) is the conditional probability of incorrect classification given Zt = 0. Under Assumption

1, we have

H∗(η)≡ H(η;θ
∗) = 1−Φ(

η−µ∗1
σ∗1

) = Φ(
µ∗1−η

σ∗1
) (3a)

and

F∗(η)≡ F(η;θ
∗) = 1−Φ(

η−µ∗0
σ∗0

) = Φ(
µ∗0−η

σ∗0
), (3b)

where Φ(·) is the standard normal distribution function. Varying η and plotting all the points

P∗(η)≡ P(η;θ∗) = (F(η;θ∗),H(η;θ∗))′ in a unit square will produce the ROC curve, which

displays the comprehensive information regarding the performance of the classifier over the
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entire range of η. For example, the ROC curve (the solid one) in Figure 1 corresponds to a

binormal model when µ∗1 =−µ∗0 = 0.8 and σ∗1 = σ∗0 = 1. Note that this is the ROC curve for

ϑ(Yt), which is not our interest. However, the ROC curve for the original classifier Yt is not

altered by the strictly increasing transformation ϑ(·), according to the invariance property.

See Krzanowski and Hand (2009) for a rigorous proof.

The binormal model simplifies the analysis by characterizing (3a) and (3b) in terms of

four parameters only. A natural estimator for each of them is obtained by replacing θ∗ by

its QMLE θ̂ in Section 2.2. For instance, H(η; θ̂) produces an estimate of H∗(η) in (3a).

However, objects like H(η; θ̂) are subject to sampling uncertainties, which must be properly

accounted for. For this purpose, the confidence intervals for a given η should be used. Define

k1(η;θ)≡ µ1−η

σ1
, k2(η;θ)≡ µ0−η

σ0
,

and k′(η;θ)≡ (k1(η;θ),k2(η;θ))′.

Moreover, we let Φ(c± d) be the closed interval [Φ(c− d),Φ(c+ d)] for any positive

c and d in R. For a nonempty set O ⊂ R2, Φ(O) ≡ {(Φ(o1),Φ(o2))
′ ∈ R2 : (o1,o2)

′ ∈ O}.

The 1−α asymptotic confidence intervals for H∗(η) and F∗(η) are given by (4a) and (4b),

respectively, in Theorem 3. To measure the joint uncertainty in estimating H∗(η) and F∗(η),

(4c) provides the 100(1−α)% simultaneous confidence region for (H∗(η),F∗(η))′.

Theorem 3 Suppose
√

T (θ̂− θ∗)
d→ N(0,J∗−1I∗J∗−1) and α ∈ (0,1). For each η ∈ R, we

have

lim
T→∞

P (H∗(η) ∈Φ(k1(η; θ̂T )± z α

2

√
∂k1(η;θ∗)

∂θ
H∗−1I∗H∗−1 ∂k1(η;θ∗)

∂θ

′
/T )) = 1−α, (4a)

lim
T→∞

P (F∗(η) ∈Φ(k2(η; θ̂T )± z α

2

√
∂k2(η;θ∗)

∂θ
H∗−1I∗H∗−1 ∂k2(η;θ∗)

∂θ

′
/T )) = 1−α, (4b)

and

lim
T→∞

P ((H∗(η),F∗(η))′ ∈Φ(Γ(η,α))) = 1−α, (4c)
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where Γ(η,α) is the set defined as

{O ∈ R2 : T (k′(η; θ̂T )−O)′(
∂k′(η;θ∗)

∂θ
H∗−1I∗H∗−1 ∂k′(η;θ∗)

∂θ

′
)−1(k′(η; θ̂T )−O)≤ χ

2
α(2)},

z α

2
≡ Φ−1(1− α

2 ), and χ2
α(2) is the 1−α quantile of the chi-squared distribution with 2

degrees of freedom.

An alternative way to define the ROC curve is to rewrite (3a)-(3b) in such a way that η

does not enter the expression explicitly. It follows from (3b) that η = µ∗0−σ∗0Φ−1(F∗(η)),

which can be plugged in (3a) to get

y∗(x)≡ y(x;θ
∗) = Φ(

µ∗1−µ∗0 +σ∗0Φ−1(x)
σ∗1

), (5)

for x≡ F∗(η) ∈ [0,1]. (5) is the functional form for the ROC curve in a unit square with F as

horizontal axis and H as vertical axis, as is shown in Figure 1. Again, y∗(x) can be estimated

by y(x; θ̂), where the true parameter θ∗ is replaced by its estimate θ̂. Now, define

k3(x;θ)≡ µ1−µ0 +σ0Φ−1(x)
σ1

and k(θ)≡ (
µ1−µ0

σ1
,
σ0

σ1
)′.

For any 0 < a < b < 1, A(a,b) is a square matrix defined as

(
1 Φ−1(a)
1 Φ−1(b)

)
.

Furthermore, let fΣ(·, ·;a,b) be the density function of a bivariate normal random vector with

zero mean and covariance matrix

Σ(a,b)≡ A(a,b)
∂k(θ∗)

∂θ
J∗−1I∗J∗−1 ∂k(θ∗)

∂θ

′
A(a,b)′.

Finally,

Fsup(u;a,b)≡


∫ u
−u

∫ u
−u fΣ(x1,x2;a,b)dx1dx2, if u > 0;

0, otherwise.
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Theorem 4 offers the confidence interval of y∗(x) in (5) for a given x and the uniform con-

fidence band when x is allowed to be any value in a closed interval. For the latter, we first

construct the uniform band for k3(x;θ∗) since it is linear in Φ−1(x), and scale the band by the

nonlinear transformation Φ(·).

Theorem 4 Suppose
√

T (θ̂−θ∗)
d→ N(0,J∗−1I∗J∗−1) and α ∈ (0,1). For each x ∈ (0,1) and

0 < a < b < 1, we have

lim
T→∞

P (y∗(x) ∈Φ(k3(x; θ̂)± z α

2

√
∂k3(x;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k3(x;θ∗)

∂θ

′
/T )) = 1−α (6a)

and

lim
T→∞

P (∀x ∈ [a,b],y∗(x) ∈Φ(k3(x; θ̂)± fα√
T
)) = 1−α, (6b)

where z α

2
≡Φ−1(1− α

2 ) and fα ≡ F−1
sup(1−α;a,b).

We now define the confidence interval for AUC. As its name suggests, AUC is defined as

the integral of y∗(x) over its domain [0,1], that is,

AUC∗ ≡ AUC(θ∗)≡
∫ 1

0
y∗(x)dx = Φ(

µ∗1−µ∗0√
(σ∗1)

2 +(σ∗0)
2
). (7)

The last equality of (7) is due to Krzanowski and Hand (2009). Let

k4(θ)≡
µ1−µ0√
σ2

1 +σ2
0

.

The confidence interval for AUC∗ is given in Theorem 5.

Theorem 5 Suppose
√

T (θ̂−θ∗)
d→ N(0,J∗−1I∗J∗−1) and α ∈ (0,1). We have

lim
T→∞

P (AUC∗ ∈Φ(k4(θ̂)± z α

2

√
∂k4(θ∗)

∂θ
J∗−1I∗J∗−1 ∂k4(θ∗)

∂θ

′
/T )) = 1−α, (8)

where z α

2
≡Φ−1(1− α

2 ).
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Compared to a poor competitor, a good classifier is rewarded by a high H∗(η) and a low

F∗(η) for a given η, as well as by a high y∗(x) for a given x, and by a high AUC∗ overall. The

upper-most curve in Figure 1 is generated for the case where µ∗1 =−µ∗0 = 1.3 and σ∗1 =σ∗0 = 1.

The mean difference µ∗1−µ∗0 is larger than that for the solid curve, whereas both curves share

the same standard deviation. This does make intuitive sense in the context of classification.

If the difference of two means is small or two distributions of ϑ(Yt) overlap to a large extent,

it is hard to distinguish one from the other. In other words, a large proportion of observations

could be misclassified, which is reflected by the poorer (solid) curve. The lower-most (dotted)

curve has the same mean values as the solid one except for the fact that here σ∗1 = σ∗0 = 2.

The higher standard deviation effectively dilutes the mean difference. Even if the means of

two distributions are very different, the two regimes cannot be distinguished sharply unless

the two distributions have small dispersions with little overlap.

Note that the confidence intervals in (4), (6) and (8) are of different forms compared to

those commonly used. Nevertheless, one may construct the interval of the form [c−d,c+d],

where both c and d are positive. However, it is possible that either c+ d > 1 or c− d < 0.

This should be avoided given that the ROC curve must lie in the unit square. The merit for

constructing Φ-scaled confidence bands is that the resulting estimators cannot fall beyond

the feasible range in finite samples. For example, the function Φ(·) ensures that both the

upper and the lower bounds must be numbers between zero and one in (8). The equations

(4) and (6a) are valid in the pointwise sense for a particular η or x. By contrast, (6b) is the

uniform confidence band for all values of x ∈ [a,b]. In order for (6b) to be useful, fα needs to

be evaluated for any α ∈ (0,1). This is the two-tailed equicoordinate quantile of a bivariate

normal distribution, which can be easily calculated by most statistical packages for a given

mean vector and a covariance matrix.

A point worth emphasizing here is that not all types of confidence bands presented above

are suitable for a specific decision problem under consideration. For example, with a well

specified loss function, a decision maker needs to concentrate only on one η, which mini-

mizes the expected loss over the entire range of η, as documented by Blöchlinger and Leip-

pold (2006), Jordà (2014) and Stein (2005). Thus, the probability forecasts will be economi-
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cally valuable if the point on the ROC curve corresponding to this optimal η is significantly

above the diagonal. Otherwise, the decision maker would rather depend on the coin-toss naive

forecast. In this situation, more attention should be paid to the pointwise confidence bands

given η, instead of the confidence band of H when F is fixed or the uniform band. In other

situations, the decision maker may not know the loss function. However, it may be required

by law to attain a minimum permissible level of H given that a value of F is achieved. This is

often encountered in medical diagnosis, where a new diagnostic device is required to satisfy

a minimum value of H given an allowable F to meet the criteria set by an administrative

agency. The confidence band of H given F is a legitimate solution to this problem. Finally,

if we only care about the overall performance of the forecasts without regard to any η or F ,

we have two choices: the uniform band and the confidence interval of the AUC. The former

is much more conservative in that the resulting band is wider than its pointwise colleagues.

Agresti (2007) reported the exact confidence intervals for H∗(η) and F∗(η) in the absence

of serial correlation. Agresti and Coull (1998) argued that the coverage probabilities for these

exact confidence intervals tend to be unduly large because of their inherent conservativeness.

They proposed the so-called “score confidence interval” and demonstrated that it performs

much better than the exact and asymptotic intervals in finite samples. Stephenson (2000) ap-

plied the score confidence intervals to judge whether the observed hit and false alarm rates in

a contingency table could be obtained purely by chance. Ma and Hall (1993) took a regres-

sion view towards ROC curve and constructed the uniform band. Demidenko (2012) studied

pointwise and uniform confidence bands with the shortest width. If the serial correlation is

detected, none of these approaches is appropriate, and those in Theorems 3-5 should be used.

In order to be useful, all unknown terms in Theorems 3-5 have to be estimated. It is

straightforward to find consistent estimators for some of them. For example, J∗ can be es-

timated by the Hessian matrix of (1) evaluated at θ̂. Any partial derivative appearing in the

asymptotic variances should be evaluated at θ̂ also. Estimating I∗ is somewhat more com-

plicated in the presence of serial correlation. Fortunately, a number of positive semi-definite

estimators have been proposed in the literature dealing with heteroskedasticity and autocor-

relation robust estimation. The basic idea is to use a finite sum of sample autocovariances to
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approximate the population infinite sum, allowing for the truncation lag to increase to infin-

ity at an appropriate rate as the sample size grows. To ensure the positive semi-definiteness

of the resulting estimators, appropriate weights, like the Bartlett sequence, are necessary.

Conventionally, the ratio b of the truncation lag to the sample size is assumed to approach

zero asymptotically (Andrews (1991) and Newey and West (1987, 1994)). Under this so-

called “small-b asymptotics”, the resulting estimator of I∗ is consistent and the t statistic is

asymptotically normally distributed. As pointed out by Kiefer and Vogelsang (2005), this

procedure is blind as to which weighting scheme (kernel) and the value of b should be used

in any finite sample because the asymptotic distribution of the t statistic does not depend on

the choice of kernel and b. They proposed a new asymptotic theory by assuming b to be a

constant. However, their asymptotic distribution is nonstandard, and the critical values are

obtained by simulation. Thus, in order to keep our procedure simple, we use the asymptotic

F approximation developed by Sun (2013, 2014) to construct various confidence bands due

to its computational ease.

3 Simulation experiments

3.1 Under correct model specification

This section serves as an illustration to shed light on the finite sample properties of the

methods proposed in Section 2 when the binormal model coincides with the true underly-

ing process. In Section 3.2 we will examine the robustness of these results when normality

assumption is violated. The data is generated from two mutually independent autoregressive

processes of order 1, that is,

Z∗t = τ+ρZ∗t−1 + ε
Z
t and Y ∗t = ρY ∗t−1 + ε

Y
t ,

where εZ
t and εY

t are normal white noises and mutually independent. The variance of εZ
t

is 1, and the variance of εY
t is determined in such a way that Var(Y ∗t ) = 1. Throughout this
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section, ϑ(·) is taken to be the identity transformation, i.e. ϑ(Yt) =Yt . Xt = (Yt ,Zt) is obtained

by letting Zt = I(Z∗t > 0), and Yt = µ∗Zt
+Y ∗t , where µ∗1 = −µ∗0 = 1 and I(·) is the indicator

function that is 1 only when the condition in (·) is met (otherwise it is 0). Two values of

τ are computed so that the corresponding π∗ equals 0.5 and 0.15, indicating that the event

Zt = 1 is balanced in the first case and relatively uncommon in the other. For independence

(ρ = 0) and each dependence strength (ρ = 0.3, 0.5, 0.7, 0.9), we simulate 1,000 Monte

Carlo replications of the processes. We consider samples of size T = 200 and 500.

To construct confidence bands, the asymptotic covariance matrix must be estimated first.

Suppose we treat the sample as i.i.d., as is often done in practice. The asymptotic covariance

matrix of θ̂ is−J∗−1, which can be estimated by its sample analog evaluated at θ̂. When serial

correlation is accommodated, we use Andrews’ (1991) quadratic spectral kernel (“small-

b asymptotics”) and Sun’s (2014) Bartlett kernel (“fixed-b asymptotics”) HAC estimators

to approximate the long run variance I∗. All computations are performed in the R system

with the aid of functions in the package sandwich. See Zeileis (2004, 2006) for additional

functions in this package to compute the long run variance. The two-tailed equicoordinate

quantile fα for the uniform bands is obtained using the package mvtnorm. The significance

level α is always set to be 5% so that the usual 95% two-tailed bands are produced. For ease

of exposition, we set η = 0 and x = 0.5 in (4) and (6a), that is, only one point on the ROC

curve is considered to avoid unnecessary clutter. For (6b), a = 0.01 and b = 0.99.

The simulation results when π∗ = 0.5 are summarized in Table 1. Notably, the empirical

coverage probabilities for all types of confidence bands are quite close to 95% when ρ = 0.

When ρ > 0, the independent bands (under “Ind.” column) cover the truth with lower fre-

quencies than the other two bands, and the gap between them gets remarkably larger when

ρ increases. Under low serial correlation (ρ = 0.3), the independent bands are still able to

cover the truth at frequencies higher than 90% for all sample sizes. As the dependence be-

comes much stronger (ρ = 0.9), most of these coverage probabilities fall below 50%, and

some of them are around 30% only even when T = 500. If the data display strong serial

correlation, the independent bands are far too narrow to cover the true ROC curve at the

nominal frequency 95%. In contrast, both Andrews’ (under “Adw.” column) and Sun’s (un-
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der “Sun.” column) bands are more robust, and the differences between their empirical and

nominal coverage probabilities are much smaller than those for independent bands. For in-

stance, when T = 500 and ρ = 0.9, the coverage probability of Sun’s (Andrews’) interval for

AUC is 95.1% (88.8%) - a sizeable improvement over the independent interval with coverage

probability of only 51.2%. Although most of the coverage probabilities of Andrews’ bands

are higher than 90% when ρ > 0, the serial correlation does weaken its performance, and

appear to get narrower as ρ goes up. This may arise from finite sample bias in estimating

the covariance matrix. In contrast, Sun’s bands are much more robust to serial correlation in

that nearly all empirical rates are closer to 95%. This is obvious by looking at ρ = 0.9 and

T = 200, where Sun’s band includes the true hit rate and false alarm rate in 97 out of 100

cases while only 77 cases are correctly covered by Andrews’ counterpart. The finding here

lends further evidence for the better finite sample properties of “fixed-b asymptotics” over

“small-b asymptotics”, especially when the data exhibits strong autocorrelation.

Table 2, which is qualitatively similar to Table 1, displays the coverage probabilities when

π∗ = 0.15. As the event Zt = 1 gets relatively uncommon or rare, the finite sample distortion

for some of the bands becomes more severe as ρ gets larger. In particular, when ρ = 0.9, it

is hard for the two robust bands to achieve a rate higher than 90%, but still are significantly

better that the independent band. Note that with ρ = 0, the rareness of the outcome variable

does not create any special problem in the coverage rates. In the current context, Sun’s ap-

proach is again slightly better than Andrews’ when T = 500. For T = 200, the performance

of both of them deteriorates similarly. However, it is expected. Given fewer observations for

Zt = 1 in a sample, any parameter relevant to the occurrence of this event is estimated less

accurately. This is the case for all types of bands except F(0). In a similar vein, King and

Zeng (2001) found that in finite samples the slope parameter of a logit model would be less

precisely estimated when the event is rare. It follows from (3b) that F∗(0) is a function of µ∗0

and σ∗0 solely, both of which are related to the more dominant event Zt = 0. Thus, the finite

sample distortion for F(0) is substantially alleviated by exploiting information contained in

more observations for Zt = 0. To confirm this intuition, we conducted an additional simu-

lation study with T = 3,000 and ρ = 0.9, and indeed found that the finite sample biases of
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Table 1: Empirical coverage probabilities when π∗ = 0.5

T=200 T=500
H(0) Ind. Adw. Sun. Ind. Adw. Sun.

ρ = 0.0 0.946 0.936 0.936 0.949 0.946 0.941
ρ = 0.3 0.948 0.944 0.946 0.920 0.937 0.932
ρ = 0.5 0.869 0.936 0.930 0.868 0.936 0.929
ρ = 0.7 0.763 0.919 0.916 0.760 0.931 0.931
ρ = 0.9 0.479 0.839 0.905 0.487 0.878 0.942

F(0)
ρ = 0.0 0.949 0.938 0.943 0.955 0.947 0.951
ρ = 0.3 0.927 0.918 0.923 0.927 0.941 0.936
ρ = 0.5 0.867 0.934 0.923 0.864 0.939 0.933
ρ = 0.7 0.749 0.918 0.924 0.748 0.926 0.929
ρ = 0.9 0.482 0.844 0.923 0.481 0.908 0.943

(H(0),F(0))
ρ = 0.0 0.949 0.935 0.934 0.950 0.948 0.945
ρ = 0.3 0.936 0.922 0.934 0.909 0.934 0.936
ρ = 0.5 0.829 0.929 0.912 0.836 0.937 0.935
ρ = 0.7 0.670 0.902 0.933 0.659 0.906 0.931
ρ = 0.9 0.276 0.774 0.973 0.293 0.858 0.978
y(0.5)

ρ = 0.0 0.955 0.950 0.952 0.949 0.946 0.945
ρ = 0.3 0.950 0.937 0.944 0.939 0.942 0.943
ρ = 0.5 0.891 0.932 0.943 0.898 0.938 0.936
ρ = 0.7 0.805 0.924 0.914 0.793 0.918 0.918
ρ = 0.9 0.520 0.846 0.894 0.526 0.877 0.926

{y(x) : x ∈ [0.01,0.99]}
ρ = 0.0 0.961 0.953 0.955 0.951 0.946 0.947
ρ = 0.3 0.945 0.937 0.934 0.945 0.946 0.944
ρ = 0.5 0.899 0.922 0.933 0.919 0.941 0.934
ρ = 0.7 0.850 0.924 0.922 0.833 0.928 0.931
ρ = 0.9 0.508 0.852 0.936 0.504 0.881 0.948
AUC

ρ = 0.0 0.950 0.941 0.945 0.963 0.954 0.950
ρ = 0.3 0.936 0.925 0.928 0.937 0.948 0.948
ρ = 0.5 0.879 0.936 0.936 0.871 0.945 0.935
ρ = 0.7 0.764 0.914 0.918 0.753 0.917 0.927
ρ = 0.9 0.472 0.842 0.929 0.512 0.888 0.951

Notes: The columns “Ind.”, “Adw.” and “Sun.” contain empirical coverage probabilities for the independent,
Andrews’ and Sun’s HAC-based autocorrelation-robust 95% confidence bands respectively. The left panel
presents results when T=200, while the results when T=500 are shown in the right panel. H(0),F(0) and
(H(0),F(0)) correspond to (4a), (4b) and (4c) respectively, for η = 0. y(0.5) is (6a) for x = 0.5.
{y(x) : x ∈ [0.01,0.99]} is (6b) for a = 0.01 and b = 0.99. AUC is (8).
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Table 2: Empirical coverage probabilities when π∗ = 0.15

T=200 T=500
H(0) Ind. Adw. Sun. Ind. Adw. Sun.

ρ = 0.0 0.941 0.921 0.927 0.955 0.940 0.942
ρ = 0.3 0.936 0.913 0.913 0.940 0.940 0.942
ρ = 0.5 0.918 0.900 0.891 0.917 0.922 0.918
ρ = 0.7 0.840 0.869 0.856 0.826 0.912 0.903
ρ = 0.9 0.574 0.790 0.742 0.576 0.827 0.850

F(0)
ρ = 0.0 0.942 0.937 0.937 0.954 0.944 0.945
ρ = 0.3 0.906 0.941 0.930 0.903 0.953 0.947
ρ = 0.5 0.838 0.931 0.946 0.826 0.944 0.943
ρ = 0.7 0.718 0.928 0.944 0.702 0.944 0.941
ρ = 0.9 0.474 0.889 0.976 0.431 0.902 0.975

(H(0),F(0))
ρ = 0.0 0.944 0.909 0.921 0.959 0.941 0.944
ρ = 0.3 0.902 0.913 0.914 0.924 0.941 0.941
ρ = 0.5 0.840 0.895 0.915 0.837 0.928 0.934
ρ = 0.7 0.690 0.874 0.918 0.673 0.900 0.920
ρ = 0.9 0.320 0.749 0.961 0.312 0.823 0.978
y(0.5)

ρ = 0.0 0.950 0.917 0.926 0.952 0.933 0.937
ρ = 0.3 0.950 0.921 0.911 0.962 0.944 0.945
ρ = 0.5 0.928 0.903 0.898 0.921 0.933 0.910
ρ = 0.7 0.864 0.867 0.873 0.863 0.917 0.907
ρ = 0.9 0.631 0.782 0.733 0.587 0.815 0.835

{y(x) : x ∈ [0.01,0.99]}
ρ = 0.0 0.947 0.926 0.924 0.955 0.943 0.940
ρ = 0.3 0.947 0.925 0.918 0.965 0.956 0.950
ρ = 0.5 0.938 0.903 0.888 0.936 0.933 0.917
ρ = 0.7 0.878 0.882 0.877 0.875 0.916 0.904
ρ = 0.9 0.654 0.790 0.770 0.615 0.827 0.860
AUC

ρ = 0.0 0.938 0.903 0.912 0.950 0.940 0.942
ρ = 0.3 0.922 0.918 0.914 0.938 0.945 0.938
ρ = 0.5 0.894 0.900 0.898 0.910 0.934 0.911
ρ = 0.7 0.794 0.891 0.888 0.821 0.916 0.914
ρ = 0.9 0.504 0.808 0.822 0.558 0.845 0.884

Notes: The columns “Ind.”, “Adw.” and “Sun.” contain empirical coverage probabilities for the independent,
Andrews’ and Sun’s HAC-based autocorrelation-robust 95% confidence bands respectively. The left panel
presents results when T=200, while the results when T=500 are shown in the right panel. H(0),F(0) and
(H(0),F(0)) are (4a), (4b) and (4c), respectively, for η = 0. y(0.5) is (6a) for x = 0.5. {y(x) : x ∈ [0.01,0.99]}
is (6b) for a = 0.01 and b = 0.99. AUC is (8).
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the robust bands largely vanish, and the empirical rate of H(0) was 93.1% (Andrews’) and

94.5% (Sun’s).

In summary, the correlated confidence band proposed in this paper offers a significantly

more robust procedure than the conventional independent band. In terms of the finite sample

performance and computational cost, Sun’s band based on F approximation is suggested.

Whether the serial correlation is present or not, this procedure performs very well in finite

samples. However, it is still subject to a moderate amount of small sample bias whose size

depends on the strength of the serial dependence ρ and the rareness of Zt = 1 in an expected

way. As noted before, the bias could be partially attributed to the imprecision in estimating

the covariance matrix using finite samples. Even when the true covariance matrix is known a

priori, the bias might still be present since the properties stated in Theorems 3-5 are justified

as T → ∞. When T is small, the true coverage probabilities in unbalanced samples can be

quite distinct from the prescribed level 1−α for any type of band.

3.2 Under model misspecifications

Swets (1986) and Hanley (1988) demonstrated the remarkable robustness property of the

binormal model. Walsh (1997) pointed out that even though the ROC curve under binormal

assumption “fits well” under model misspecification, the inferences based on the misspecified

model could be misleading. He demonstrated this point in a simulation study of the binormal

estimator when the data came from a bilogistic distribution. Faraggi and Reiser (2002) and

Devlin et al. (2013) have also studied the effect of different types of model misspecification in

biomedical contexts. To examine how robust our confidence bands are to the possible model

misspecification and data configurations that are more typical in economics and business, we

consider two additional data generating processes (DGP) which are extensions of the models

in Section 3.1. As before, Z∗t = τ+ρZ∗t−1 + εZ
t , εZ

t follows the standard normal distribution,

and Zt = I(Z∗t > 0). However, Yt is no longer normally distributed given Zt . Specifically,

we let Y ∗st = ρY ∗s(t−1)+ εY
st , where εY

st is a normal white noise whose variance is determined

such that Var(Y ∗st) = 1 for each s = 1,2, ...,S+ 1. Furthermore, (εY
1t ,ε

Y
2t , ...,ε

Y
(S+1)t ,ε

Z
t ) are
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mutually independent. In the first scenario, Yt = µ∗Zt
+ ∑

S
s=1 Y ∗2st −S√

2S
, where µ∗1 =−µ∗0 = 1. Since

Y ∗st is a standard normal variate, ∑
S
s=1Y ∗2st follows χ2 distribution with S degrees of freedom.

This process is motivated by observing that given Zt , Yt has mean µ∗Zt
and unit variance,

and thus shares the same first two moments as the process in Section 3.1. However, the

distribution of Yt is asymmetric and the degree of skewness is completely controlled by S

in that a higher S is associated with a lower skewness. In the second scenario, Yt = µ∗Zt
+

√
S−2√

S

Y ∗(S+1)t√
∑

S
s=1 Y ∗2st /S

. Note that given Zt ,
Y ∗(S+1)t√

∑
S
s=1 Y ∗2st /S

follows the t distribution with S degrees of

freedom. Consequently, Yt is symmetrically distributed, and it has mean µ∗Zt
and unit variance

given Zt . Thus, as in scenario 1, in scenario 2, Yt shares the same first two moments as

process in Section 3.1. However, the tail of its distribution is fat relative to that of a normal

distribution, and the excess kurtosis is non-zero. The larger the degree of freedom S, the

more the distribution resembles a normal distribution. Although these two scenarios by no

means exhaust the possibilities where the maintained binormal model could be misspecified,

they are of particular interest. In both cases, the first two moments, namely, the mean and

the variance, match those values in Section 3.1. The robustness of our model is examined

when the third and fourth moments deviate from those values corresponding to the normal

benchmark. Faraggi and Reiser (2002) cautioned that a moderate bias in AUC is likely to arise

when the underlying distributions are complex like bimodal mixtures and the two conditional

forecast distributions are poorly separated (e,g., AUC= 0.7 or less). In these circumstances,

Devlin et al. (2013) recommended estimating the ROC curve directly within a parametric

family rather than modeling the marker distributions that induce the ROC curve. However,

with a high discrimination power of Yt (e.g., AUC= 0.9), they found the binormal model to

be reasonably robust to bimodal distributions too. Since most of the classifiers in economics

and related disciplines are unimodally distributed, as those in Section 4, we will not consider

this case in the simulation. For ease of exposition, we focus on π∗ = 0.5. The results with

π∗ = 0.15 are similar, and are available upon request.

Table 3 shows the empirical coverage probabilities of three types of confidence intervals

for AUC when the DGP is skewed, where a specific skewness is obtained as
√

8/d f . In

this table, ∆AUC is the simulated difference between the AUC of the true process and that of
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the estimated binormal model. In order to minimize sampling variability, our computation of

∆AUC is based on a sample of size 1,000,000 with ρ= 0 (∆AUC is roughly the same for other

values of ρ). The relatively minor effect of skewness on AUC is reflected by a small bias in the

estimation of AUC (∆AUC = 0.016) - a finding that is consistent with the “forgiving” property

of the binormal assumption as demonstrated by Hanley (1988). Furthermore, ∆AUC shrinks

towards zero as the degree of freedom of χ2 distribution (df ) rises. This is not surprising

since χ2 distribution with a large degree of freedom is roughly symmetric, and thus can be

approximated fairly well by a normal distribution.

Except for df =30, the independent interval performs poorly, and a larger sample (T =

500) does not help in improving its coverage properties. As df gets larger, the true AUC is

approximated by the estimated AUC with a higher precision. Accordingly, the coverage rates

get closer to the nominal level 95%. By ignoring the strong serial correlation in the data,

the performance of the independent interval deteriorates as ρ rises in all cases. In contrast,

our robust intervals provide a substantial improvement in the presence of serial correlation,

especially when ρ = 0.9. For instance, all of the coverage probabilities of Sun’s interval

exceed 0.91 when ρ = 0.9 and T = 500 even though the skewness is strong (df =1), while

the conventional independent interval covers the truth at frequency lower than 0.62. Again,

Andrews’ interval is slightly worse than Sun’s if the data is strongly correlated. By comparing

Tables 1 and 3, it is clear that all intervals are adversely impacted by the skewness, but our

robust intervals seem to be affected less. In other words, our serial correlation-robust band

provides an extra measure of robustness to skewness.

As noted above, µ∗1 = −µ∗0 = 1 in Table 3. When df =1, the population value of AUC is

0.938 and ∆AUC= 0.016 - a bias of moderate size. We also carried out another experiment

(not reported here) where forecasts are much less discriminatory with µ∗1 = −µ∗0 = 0.26. In

the case of df =1, the population value of AUC reduces to 0.75 and ∆AUC rises to 0.105.

Thus, as was first pointed out by Faraggi and Reiser (2002), the bias from the misspecified

binormal model due to skewness is more severe when the forecasts are less discriminatory.

When T = 200 and ρ = 0.7, the empirical coverage rates for three intervals are 0.314 (inde-

pendent), 0.489 (Andrews’), and 0.530 (Sun’s) respectively in this scenario of low discrimi-
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Table 3: Coverage probabilities for AUC in the presence of skewness

T=200 T=500
df =1(∆AUC=0.016) Ind. Adw. Sun. Ind. Adw. Sun.

ρ = 0.0 0.691 0.878 0.883 0.622 0.851 0.854
ρ = 0.3 0.706 0.896 0.900 0.612 0.862 0.862
ρ = 0.5 0.649 0.895 0.896 0.567 0.856 0.854
ρ = 0.7 0.550 0.853 0.868 0.508 0.877 0.887
ρ = 0.9 0.386 0.812 0.874 0.361 0.883 0.915

df =2(∆AUC=0.011)
ρ = 0.0 0.805 0.902 0.911 0.745 0.897 0.899
ρ = 0.3 0.807 0.917 0.922 0.748 0.890 0.889
ρ = 0.5 0.769 0.898 0.902 0.715 0.897 0.897
ρ = 0.7 0.691 0.899 0.888 0.639 0.910 0.911
ρ = 0.9 0.455 0.839 0.882 0.456 0.896 0.923

df =3(∆AUC=0.009)
ρ = 0.0 0.866 0.915 0.923 0.818 0.897 0.898
ρ = 0.3 0.850 0.926 0.924 0.811 0.912 0.903
ρ = 0.5 0.819 0.923 0.926 0.765 0.918 0.911
ρ = 0.7 0.739 0.909 0.916 0.710 0.929 0.916
ρ = 0.9 0.496 0.826 0.889 0.494 0.878 0.920

df =4(∆AUC=0.007)
ρ = 0.0 0.886 0.936 0.944 0.864 0.925 0.922
ρ = 0.3 0.878 0.925 0.930 0.844 0.917 0.921
ρ = 0.5 0.844 0.930 0.935 0.823 0.936 0.936
ρ = 0.7 0.760 0.913 0.915 0.764 0.942 0.941
ρ = 0.9 0.517 0.838 0.916 0.504 0.902 0.930

df =5(∆AUC=0.006)
ρ = 0.0 0.909 0.928 0.935 0.864 0.918 0.920
ρ = 0.3 0.876 0.918 0.921 0.857 0.920 0.914
ρ = 0.5 0.858 0.931 0.925 0.809 0.919 0.916
ρ = 0.7 0.770 0.903 0.912 0.774 0.945 0.936
ρ = 0.9 0.551 0.847 0.906 0.524 0.908 0.921

df =6(∆AUC=0.005)
ρ = 0.0 0.899 0.944 0.948 0.868 0.927 0.927
ρ = 0.3 0.901 0.938 0.939 0.896 0.933 0.933
ρ = 0.5 0.856 0.927 0.927 0.842 0.926 0.920
ρ = 0.7 0.786 0.934 0.929 0.792 0.942 0.942
ρ = 0.9 0.568 0.868 0.922 0.554 0.904 0.923

df =30(∆AUC=0.002)
ρ = 0.0 0.941 0.951 0.955 0.945 0.953 0.952
ρ = 0.3 0.935 0.935 0.934 0.940 0.947 0.947
ρ = 0.5 0.910 0.932 0.932 0.911 0.942 0.938
ρ = 0.7 0.870 0.947 0.946 0.852 0.937 0.936
ρ = 0.9 0.611 0.885 0.926 0.617 0.909 0.943

Notes: The columns “Ind.”, “Adw.” and “Sun.” contain empirical coverage probabilities for the independent,
Andrews’ and Sun’s HAC-based autocorrelation-robust 95% confidence intervals for AUC respectively. The
left panel presents results when T = 200, while the results when T = 500 are shown in the right panel. “df ” is
the degree of freedom of the χ2 distribution in DGP. “∆AUC” is the simulated difference between the AUC of
the true process and that of the estimated binormal model.
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Table 4: Coverage probabilities for AUC in the presence of excess kurtosis

T=200 T=500
df =4(∆AUC=0.017) Ind. Adw. Sun. Ind. Adw. Sun.

ρ = 0.0 0.786 0.902 0.905 0.667 0.854 0.852
ρ = 0.3 0.777 0.894 0.894 0.684 0.862 0.863
ρ = 0.5 0.764 0.888 0.887 0.646 0.864 0.857
ρ = 0.7 0.693 0.887 0.898 0.592 0.873 0.896
ρ = 0.9 0.448 0.810 0.896 0.462 0.844 0.916

df =5(∆AUC=0.010)
ρ = 0.0 0.862 0.919 0.923 0.799 0.896 0.897
ρ = 0.3 0.837 0.919 0.920 0.787 0.904 0.903
ρ = 0.5 0.805 0.913 0.916 0.735 0.889 0.898
ρ = 0.7 0.722 0.905 0.922 0.667 0.901 0.911
ρ = 0.9 0.504 0.843 0.919 0.453 0.843 0.925

df =6(∆AUC=0.007)
ρ = 0.0 0.885 0.926 0.932 0.863 0.922 0.922
ρ = 0.3 0.875 0.931 0.929 0.838 0.924 0.920
ρ = 0.5 0.826 0.932 0.934 0.786 0.910 0.911
ρ = 0.7 0.765 0.928 0.939 0.721 0.913 0.933
ρ = 0.9 0.493 0.833 0.934 0.495 0.867 0.948

df =7(∆AUC=0.006)
ρ = 0.0 0.901 0.935 0.939 0.881 0.929 0.930
ρ = 0.3 0.897 0.940 0.937 0.858 0.937 0.932
ρ = 0.5 0.869 0.937 0.933 0.819 0.922 0.923
ρ = 0.7 0.751 0.919 0.936 0.752 0.937 0.943
ρ = 0.9 0.479 0.824 0.917 0.472 0.848 0.928

df =8(∆AUC=0.005)
ρ = 0.0 0.920 0.938 0.941 0.889 0.919 0.919
ρ = 0.3 0.906 0.947 0.946 0.885 0.930 0.932
ρ = 0.5 0.864 0.938 0.933 0.857 0.943 0.941
ρ = 0.7 0.743 0.924 0.928 0.766 0.941 0.952
ρ = 0.9 0.478 0.839 0.922 0.494 0.885 0.934

df =9(∆AUC=0.004)
ρ = 0.0 0.910 0.926 0.933 0.920 0.945 0.948
ρ = 0.3 0.932 0.965 0.961 0.889 0.924 0.922
ρ = 0.5 0.862 0.940 0.936 0.845 0.930 0.932
ρ = 0.7 0.743 0.921 0.917 0.752 0.932 0.945
ρ = 0.9 0.458 0.836 0.925 0.476 0.865 0.936

df =100(∆AUC=0.001)
ρ = 0.0 0.941 0.935 0.937 0.958 0.954 0.956
ρ = 0.3 0.921 0.940 0.943 0.949 0.960 0.964
ρ = 0.5 0.903 0.942 0.938 0.906 0.958 0.953
ρ = 0.7 0.772 0.918 0.921 0.801 0.929 0.935
ρ = 0.9 0.508 0.843 0.937 0.525 0.890 0.960

Notes: The columns “Ind.”, “Adw.” and “Sun.” contain empirical coverage probabilities for the independent,
Andrews’ and Sun’s HAC-based autocorrelation-robust 95% confidence intervals for AUC respectively. The
left panel presents results when T = 200, while the results when T = 500 are shown in the right panel. “df ” is
the degree of freedom of the t distribution in DGP. The excess kurtosis is well defined only if df> 4. “∆AUC”
is the simulated difference between the AUC of the true process and that of the estimated binormal model.
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nation. Again, our robust bands suffer from the misspecification bias, but they still perform

better than the independent band in the presence of serial correlation. In these circumstances,

Faraggi and Reiser (2002) found that a Box-Cox transformation of the forecasts before ap-

plying the binormal model performed admirably well.

When the DGP exhibits excess kurtosis, the coverage properties can be found in Table

4. Here the excess kurtosis is obtained as 6/(df -4). By comparing this table with the cor-

responding figures in Table 1, we find that excess kurtosis has an additional adverse effect

on the coverage rates that gets worse with higher autocorrelation. As in Table 3, the perfor-

mance of all types of intervals varies with ρ and df in an expected manner, but our robust

bands significantly improve the situation across the board. For instance, with df =6 (i.e., ex-

cess kurtosis = 3), T = 500, and ρ= 0.9, the coverage rate for the independent interval is only

0.495, compared to 0.948 for Sun’s interval. It is interesting to note that in both Tables 3 and

4, the independent interval is strictly worse than the two robust intervals even without serial

correlation (ρ = 0) for smaller df ’s. The reason is that the independent interval is based on

the inverse of negative Hessian matrix, i.e. −J∗−1. In contrast, both robust intervals are based

on the sandwich covariance matrix J∗−1I∗J∗−1, which is equal to −J∗−1 by the well-known

information equality when the model is correctly specified. However, J∗−1I∗J∗−1 usually

yields larger variances than −J∗−1 when the model is misspecified. This explains why all

types of intervals are equally good in Tables 1 - 4 (df =30) when ρ = 0, as in all of these

circumstances, the binormal model is exactly or roughly correct and the information equality

holds. When df in Tables 3 or 4 is small, the information equality fails and the independent

interval tends to be unduly narrower than the robust counterparts.

The implication of these simulation results is that i) a suitably transformed binor-

mal model is pretty robust to all but poorly separated complex distributions, and ii) the

autocorrelation-robust confidence intervals are always preferred if the time dependence is

present, and iii) our robust bands provide an extra measure of robustness when the binormal

model is misspecified due to non-zero skewness and excess kurtosis.
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4 An empirical application to SPF forecasts of GDP down-

turns

We apply the methodology outlined above to evaluate the accuracy of the subjective proba-

bility forecasts of real GDP downturns in the Survey of Professional Forecasters (SPF). The

SPF, conducted by the Federal Reserve Bank of Philadelphia, is a leading U.S. survey col-

lecting subjective probability predictions in economics. The respondents of this survey are

asked to indicate the probability they would attach to a decline in the level of real GDP in

the current and the next four quarters. For the sake of illustration, we focus on the current-

quarter and three-quarter-ahead probability forecasts averaged over individuals. Our sample

covers the period from 1968:Q4 to 2014:Q4. In order to evaluate the forecasts in real time, we

calculated the actual GDP growth rates based on values known one month after the quarter.

The total number of observations is 185, and the fraction of real GDP declines is about 13%,

lower than the mean recorded forecasts 19.3% (for current-quarter forecasts) and 17.2% (for

three-quarter-ahead forecasts). The reader is referred to Croushore (1993) for a general in-

troduction to SPF. Lahiri and Wang (2013) used a battery of diagnostic tools including the

ROC curve to examine the value of these forecasts over five available horizons. They found

that the current-quarter forecasts have impressive discriminatory power, whereas the quality

of three-quarter-ahead forecasts is marginal. Thus, studying the SPF forecasts at these two

horizons will allow us to examine if the quality of the forecasts affects the relative distortion

of the confidence bands in a misspecified model with autocorrelation.

Our serial correlation-robust ROC analysis is motivated by Figure 2, which depicts the

sample autocorrelation functions of SPF forecasts and the actual, respectively. The plots dis-

play the presence of moderate serial correlation, especially for the forecasts, where all the

autocorrelation coefficients up to four-quarter lag are significantly different from zero. Like

the binary target variable, real GDP growth in real time also exhibited significant autocor-

relation up to lag 3. Ignoring this temporal dependence, which is typical in most economic

time series data, would make the resulting inference misleading.

25



To implement QMLE, the probability forecasts with zero and one as two natural bounds

need to be transformed using ϑ(·). As mentioned in Section 2.2, we adopt the bellwether

probit link function, i.e. we set ϑ(Yt) = Φ−1(Yt). Table 5 shows several descriptive statistics

of the Φ−1-transformed SPF forecasts given the two economic states, that is, Z = 1 and

Z = 0. Except for the current-quarter forecasts conditional on Z = 0, all other statistics are

close to zero, validating the normality assumption. For the three-quarter-ahead forecasts, the

Kolmogorov-Smirnov (K-S) test of normality in Table 5 lends further support to the binormal

model. For the current-quarter forecasts, the normality assumption is reasonable when Z =

1 although it is rejected when Z = 0. We could have experimented with alternative link

functions to attain normality for the current-quarter forecasts when Z = 0. However, since

the conditional distributions of the transformed forecasts are unimodal and the current-quarter

forecasts are highly discriminatory, we kept the probit link, noting that the mild skewness and

excess kurtosis in the current-quarter forecasts should not generate any bias in our inference

according to the results summarized in Section 3.2.

Figures 3 and 4 present five types of confidence bands, as in Theorems 3-4, for the

current-quarter and three-quarter-ahead SPF forecasts, respectively. We only report Sun’s

band (“Corr. 95% bands”) because of its superior finite sample properties, as found in Sec-

Figure 2: Autocorrelation functions of SPF and the Actual
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(a) Current-quarter forecasts
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(b) Three-quarter-ahead forecasts
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(c) Real GDP declines

Notes: The autocorrelation function of real GDP declines is based on 0/1 binary series
{Zt : t = 1, ...,T}, where Zt equals 1 (0) if real GDP declined (rose) in quarter t. The dotted lines are
95% confidence band about the zero line.
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tion 3. Observe that these bands are not symmetric around the estimated ROC curve. This is

simply due to the scaling of Φ(·), which, as argued before, guarantees that the bands cannot

go outside the unit square. As is evident from these graphs, all confidence bands become

wider when the serial correlation is taken into consideration. This is because of the autocor-

relation functions in Figure 2. Given that the estimated long run variance is a weighted sum

of the sample variance and autocovariances of the score vector, the independent confidence

bands, by ignoring the autocovariances, suffer from a downward bias.

It is interesting to note that inference based on the independence assumption in Figures

4(a)-4(d) leads us to believe that the three-quarter-ahead SPF outperforms a coin-toss naive

forecast whose ROC curve is represented by the diagonal ROC line. However, when looking

at the confidence bands under autocorrelation, a different picture emerges because the lower

bounds of the robust bands do not stay over the diagonal line uniformly. As a comparison,

the confidence bands for the current-quarter probability forecasts in Figure 3 indicate that

the professional forecasters perform much better at this shorter horizon, as reflected by a

higher ROC curve. As in the case of three-quarter-ahead forecasts, here too the confidence

band accounting for the serial correlation is always wider than its independent benchmark.

However, the wider confidence bands for the current-quarter forecasts do not include the di-

agonal, meaning that both methods lead to essentially the same inference in rejecting zero

forecast skill. In fact, all bands in Figure 3 lie in the upper left triangle, producing an over-

whelming evidence on the high accuracy of the current-quarter forecasts. Only in the case

of three-quarter-ahead forecasts do the two methods of constructing confidence band make

Table 5: Descriptive statistics of the transformed SPF forecasts

Current-quarter forecasts Three-quarter-ahead forecasts
Statistics Z = 1 Z = 0 Z = 1 Z = 0
skewness -0.579 1.124 -0.022 0.235

excess kurtosis -0.080 1.686 -0.920 0.226
K-S test statistic 0.126 0.111∗ 0.078 0.060

Notes: Column “Z = 1” (“Z = 0”) contains statistics for the Φ−1-transformed SPF forecasts when real GDP
declines (rises).∗ means significance at 5% level.
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a difference in conclusion. Interestingly, unlike in Wilks (2010), the current-quarter forecast

bands are not affected relatively more than the three-quarter bands because the autocorrela-

tions were largely the same for the two forecasts.

The uniform band and the confidence interval for AUC can be informative if one is in-

terested in evaluating the value of the forecasts over the whole range. For the two forecast

horizons, the bounds for the uniform band are reported in Figures 3(e) and 4(e) such that

we are 95% certain that the true ROC curve when F ∈ [0.01,0.99] would fall strictly be-

tween the two bounds. To put it differently, if the uniform band excludes the diagonal and

the estimated ROC curve lies in the upper triangular area, we are more certain about the

performance of the forecasts. This is true for the current-quarter forecasts, but not so for

the three-quarter-ahead forecasts. From Figure 4(e), it is clear that we cannot reject that the

population ROC curve lies below the diagonal using either of the bands, although the curve

becomes more likely to lie below the diagonal when serial correlation is adjusted for. For the

current-quarter forecasts, the estimated AUC value is 0.945, with the two 95% confidence

intervals: [0.875,0.980] (assuming independence) and [0.825,0.988] (not assuming indepen-

dence). Either interval indicates an AUC significantly higher than 0.5, which is the AUC of

the coin-toss naive forecast. For the three-quarter-ahead forecasts, the AUC estimate is only

0.649, and the two intervals are [0.541,0.746] (assuming independence) and [0.409,0.840]

(not assuming independence). Clearly, taking serial correlation into account ends up with a

drastically different conclusion with respect to three-quarter-ahead forecasts. To reiterate, a

comparison of the five types of confidence bands in Figures 3 and 4 highlights the importance

of allowing for autocorrelation in making inference about ROC and its various functionals.

Also, ignoring autocorrelation tends to underestimate the true sampling uncertainty, irrespec-

tive of the quality of forecasts.

Our illustrative examples also suggest that inference on AUC should be combined with

other types of confidence bands (as in Figures 3 and 4) to draw meaningful conclusions

regarding the quality of forecasts. Consider the case where the ROC curve crosses the no-

skill diagonal line. The AUC could still be larger than 0.5 as long as the part above the

diagonal dominates. A significant AUC may tell nothing useful to a decision maker if only
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Figure 3: Estimated 95% confidence bands of the ROC curve for current-quarter forecasts
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(b) F given η
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(c) H and F given η
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(d) H given F
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Notes: (a)-(e) present the confidence bands of (4a), (4b), (4c), (6a), and (6b), respectively. We
consider only one value of η to make (c) readable. For (e), the band for F ∈ [0.01,0.99] is plotted.
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Figure 4: Estimated 95% confidence bands of the ROC curve for three-quarter-ahead forecasts
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(b) F given η
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(d) H given F
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Notes: (a)-(e) present the confidence bands of (4a), (4b), (4c), (6a), and (6b), respectively. We
consider only one value of η to make (c) readable. For (e), the band for F ∈ [0.01,0.99] is plotted.
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the cut-off values corresponding to the part under the diagonal are relevant in the context of

a particular loss structure. Only when we are sure that the ROC curve cannot lie in the lower

triangular area, reporting the global AUC makes an unequivocal sense.

5 Conclusion and further remarks

In this paper, we developed six types of serial correlation-robust confidence bands for ROC

curves in the binormal model. Our asymptotic theory is based on the law of large numbers

and central limit theorem for a mixing sequence. The confidence bands are obtained from a

direct application of the (functional) delta method. The simulation experiment we conduct

shows a better finite sample performance of these robust confidence bands than conventional

independent bands regardless of the underlying processes. Depending on the sample size, the

event’s base rate, and the type of band considered, we find about 32%−102% improvement

in our robust bands in terms of the coverage probabilities in the presence of strong serial cor-

relation. Simulation experiments show that accounting for positive serial correlation would

widen the confidence bands for small as well as for large sample sizes. In our illustrative ex-

ample, we show how the conclusion regarding forecast skill for the three-quarter-ahead SPF

probability forecasts is reversed when serial correlation is accounted for while constructing

the various types of confidence intervals. The underestimation of the coverage rates of the

bands when autocorrelation is ignored does not seem to depend on the quality of forecasts.

We emphasized that our robust procedure still suffers from finite sample distortion in

small samples with strong serial correlation, especially when the event being predicted is

relatively rare. However, in large samples, where the number of realizations of the rare event

is adequate, the problem goes away and the use of robust bands improves the situation quite

remarkably. As an added bonus, our autocorrelation-robust bands provide an extra measure

of robustness in the presence of skewness and excess kurtosis.

We only considered confidence bands in a fully parametric binormal model, which might

be misspecified due to skewness and excess kurtosis in the underlying process. Unless the

31



DGP is close to the binormal model, the misspecification bias cannot be overlooked particu-

larly when the forecasts are not very powerful. However, the binormal models only needs to

assume that there is a monotone function that will simultaneously transform the forecasts for

the two regimes into normal distributions, because the ROC curve remains invariant to such

transformations. The Box-Cox transformation to normality works very well in a wide variety

of cases, but needs an additional step to estimate the power parameter. If such a transfor-

mation is not feasible because the distributions are too complex, a semiparametric version of

the model is a potential choice (Cai and Moskowitz (2004), Cai and Pepe (2002), Hsieh and

Turnbull (1998), and Metz et al. (1998)). If one wants to discard the binormal assumption

altogether, nonparametric method is the most robust approach to follow, provided we have

a fairly large sample and adequate number of points on the curve (Lloyd (1998)). Unfortu-

nately, there is no study on semiparametric and nonparametric ROC confidence bands robust

to serial correlation. We leave these for future research.
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Blöchlinger, A. and Leippold, M. (2006), ‘Economic Benefit of Powerful Credit Scoring’,

Journal of Banking & Finance 30, 851–873.

Cai, T. and Moskowitz, C. S. (2004), ‘Semi-parametric Estimation of the Binormal ROC

Curve for a Continuous Diagnostic Test’, Biostatistics 5, 573–586.

Cai, T. and Pepe, M. S. (2002), ‘Semiparametric Receiver Operating Characteristic Anal-

ysis to Evaluate Biomarkers for Disease’, Journal of the American Statistical Association

97, 1099–1107.

Cohen, J., Garman, S. and Gorr, W. (2009), ‘Empirical Calibration of Time Series Moni-

toring Methods using Receiver Operating Characteristic Curves’, International Journal of

Forecasting 25, 484–497.

Croushore, D. (1993), Introducing: The Survey of Professional Forecasters. Federal Reserve

Bank of Philadelphia Business Review, November/December, 3-13.

33



Demidenko, E. (2012), ‘Confidence Intervals and Bands for the Binormal ROC Curve Revis-

ited’, Journal of Applied Statistics 39, 67–79.

Devlin, S. A., Thomas, E. G. and Emerson, S. S. (2013), ‘Robustness of Approaches to ROC

Curve Modeling under Misspecification of the Underlying Probability Model’, Communica-

tions in Statistics-Theory and Methods 42, 3655–3664.

Drehmann, M. and Juselius, M. (2014), ‘Evaluating Early Warning Indicators of Banking

Crises: Satisfying Policy Requirements’, International Journal of Forecasting 30, 759–780.

Faraggi, D. and Reiser, B. (2002), ‘Estimation of the Area under the ROC Curve’, Statistics

in Medicine 21, 3093–3106.

Fawcett, T. (2006), ‘An Introduction to ROC Analysis’, Pattern Recognition Letters 27, 861–

874.

Gorr, W. and Schneider, M. J. (2011), ‘Large-Change Forecast Accuracy: Reanalysis of M3-

Competition Data using Receiver Operating Characteristic Analysis’, International Journal

of Forecasting 29, 274–281.

Green, D. M. and Swets, J. A. (1966), Signal Detection Theory and Psychophysics, John

Wiley & Sons.

Hanley, J. A. (1988), ‘The Robustness of the “Binormal” Assumptions Used in Fitting ROC

Curves’, Medical Decision Making 8, 197–203.

Hsieh, F. and Turnbull, B. W. (1996), ‘Nonparametric and Semiparametric Estimation of the

Receiver Operating Characteristic Curve’, The Annals of Statistics 24, 25–40.
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Mathematical Appendix

This appendix accompanies the paper “Confidence Bands for ROC Curves with Serially De-

pendent Data”. It contains proofs of all theorems in the text.

Proof (Theorem 1): By (2a),

µ̂1 =
∑

T
t=1 Ztϑ(Yt)/T

∑
T
t=1 Zt/T

.

It follows from the strong law of large number for mixing sequences (cf. McLeish (1975))

that ∑
T
t=1 Ztϑ(Yt)/T a.s.→ E(Ztϑ(Yt)) = π∗µ∗1 and ∑

T
t=1 Zt/T a.s.→ π∗. Hence, µ̂1

a.s.→ µ∗1. Consis-

tency of µ̂0 is established in a similar fashion.

By (2b),

σ̂
2
1 =

∑
T
t=1 Zt(ϑ(Yt)−µ∗1)

2/T

∑
T
t=1 Zt/T

+
2∑

T
t=1 Zt(ϑ(Yt)−µ∗1)(µ

∗
1− µ̂1)/T

∑
T
t=1 Zt/T

+
∑

T
t=1 Zt(µ∗1− µ̂1)

2/T

∑
T
t=1 Zt/T

,

where the first term converges to (σ∗1)
2 by the strong law, and the last two terms converge to 0

due to the consistency of µ̂1. Therefore, σ̂2
1

a.s.→ (σ∗1)
2. The same reasoning applies to σ̂2

0.

Proof (Lemma 1): Let st,q(θ) be the qth element of st(θ) for q = 1,2,3,4. It follows that

st,1(θ
∗) = Zt(

ϑ(Yt)−µ∗1
(σ∗1)

2 )

st,2(θ
∗) = Zt(

(ϑ(Yt)−µ∗1)
2

2(σ∗1)4 − 1
2(σ∗1)2 )

st,3(θ
∗) = (1−Zt)(

ϑ(Yt)−µ∗0
(σ∗0)

2 )

st,4(θ
∗) = (1−Zt)(

(ϑ(Yt)−µ∗0)
2

2(σ∗0)4 − 1
2(σ∗0)2 ).

Further, let a ≡ [r′/(r′− 1)] be the largest integer less than or equal to r′/(r′− 1) and b ≡

2a/(a− 1). By 1(ii), r′ > 1, so b > 2. For any q and t, ‖st,q(θ
∗)‖b ≤ ‖st,q(θ

∗)‖[b]+1 < ∞,

where ‖ · ‖b is the Lb norm on (Ω,F ,P ). Here we use Jensen’s inequality to derive the first
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inequality. Then,

|Cov(s1,i(θ
∗),s1+m, j(θ

∗))| ≤ 2a(2αm)
1
a‖s1,i(θ

∗)‖b‖s1+m, j(θ
∗)‖b

= 2a(2αm)
1
a‖s1,i(θ

∗)‖b‖s1, j(θ
∗)‖b, (9)

for any i, j and m ∈ N. The first line in (9) is Davydovs inequality, and the second is due to

stationarity. Take summation on both sides of (9) over m to yield

∞

∑
m=1
|Cov(s1,i(θ

∗),s1+m, j(θ
∗))| ≤ 2a(2)

1
a‖s1,i(θ

∗)‖b‖s1, j(θ
∗)‖b

∞

∑
m=1

α
1
a
m

= C
∞

∑
m=1

α
1
a
m < ∞,

where C ≡ 2a(2)
1
a‖s1,i(θ

∗)‖b‖s1, j(θ
∗)‖b. The finiteness of ∑

∞
m=1 |Cov(s1,i(θ

∗),s1+m, j(θ
∗))|

comes from two facts, that is, C < ∞ and ∑
∞
m=1 α

1
a
m < ∞. Since i, j are arbitrary, we have

verified that the autocovariance matrix Γm ≡Cov(st(θ
∗),st+m(θ

∗)) is absolutely summable.

Note that

I∗T = Var(
1√
T

T

∑
t=1

st(θ
∗))

= Γ0 +
T−1

∑
m=1

T −m
T

(Γm +Γ
′
m).

For any nonzero λ ∈ R4,

λ
′I∗T λ = λ

′
Γ0λ+

T−1

∑
m=1

T −m
T

(λ′Γmλ+λ
′
Γ
′
mλ)

= λ
′
Γ0λ+

T−1

∑
m=1

(λ′Γmλ+λ
′
Γ
′
mλ)− 1

T

T−1

∑
m=1

m(λ′Γmλ+λ
′
Γ
′
mλ).
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Since ∑
∞
m=1 |λ′Γmλ|< ∞, dominated convergence implies that

lim
T→∞

1
T

T−1

∑
m=1

mλ
′
Γmλ = 0,

lim
T→∞

1
T

T−1

∑
m=1

mλ
′
Γ
′
mλ = 0.

Hence,

lim
T→∞

λ
′I∗T λ = λ

′
Γ0λ+

∞

∑
m=1

(λ′Γmλ+λ
′
Γ
′
mλ) = λ

′I∗λ < ∞,

where I∗ ≡ Γ0 +∑
∞
m=1(Γm +Γ′m). Since λ is arbitrarily chosen, we have I∗T → I∗. Obviously,

I∗ is symmetric. By Assumption 2, I∗T is positive definite for each T ∈N, implying λ′I∗T λ > 0.

Therefore, λ′I∗λ≥ 0 for any nonzero λ∈ R4. I∗ is positive semidefinite as a result. Moreover,

|I∗T | > ε for all T > N(ε), so |I∗| ≥ ε > 0 and I∗ is positive definite, which completes the

proof.

Proof (Theorem 2): Define θ̃ as

(
∑

T
t=1 Ztϑ(Yt)

∑
T
t=1 Zt

,
∑

T
t=1 Zt(ϑ(Yt)−µ∗1)

2

∑
T
t=1 Zt

,
∑

T
t=1(1−Zt)ϑ(Yt)

∑
T
t=1 1−Zt

,
∑

T
t=1(1−Zt)(ϑ(Yt)−µ∗0)

2

∑
T
t=1 1−Zt

)′.

Suppose
√

T (θ̃− θ∗)
d→ N(0,J∗−1I∗J∗−1). If we can show

√
T (θ̂− θ̃) = op(1), then the

conclusion of Theorem 2 follows as a result of asymptotic equivalence lemma.

Note that

√
T

∑
T
t=1 Zt((ϑ(Yt)− µ̂1)

2− (ϑ(Yt)−µ∗1)
2)

∑
T
t=1 Zt

=
√

T (µ∗1− µ̂1)
2 +

2∑
T
t=1 Zt(ϑ(Yt)−µ∗1)/

√
T

∑
T
t=1 Zt/T

(µ∗1− µ̂1).

Since ∑
T
t=1 Zt(ϑ(Yt)− µ∗1)/

√
T = Op(1) by central limit theorem, the second term is op(1).

(µ∗1− µ̂1)
2 is Op(1/T ) by central limit theorem and continuous mapping theorem, which

implies the first term is also op(1). Similarly, we can show
√

T ∑
T
t=1(1−Zt)((ϑ(Yt)− µ̂0)

2−

(ϑ(Yt)−µ∗0)
2)/∑

T
t=1(1−Zt) = op(1). It then follows that

√
T (θ̂− θ̃) = op(1).
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Define ΠT to be


π∗T

∑
T
t=1 Zt

0 0 0

0 π∗T
∑

T
t=1 Zt

0 0

0 0 (1−π∗)T
∑

T
t=1(1−Zt)

0

0 0 0 (1−π∗)T
∑

T
t=1(1−Zt)

 .

It remains to show
√

T (θ̃− θ∗)
d→ N(0,J∗−1I∗J∗−1). This is true because

√
T (θ̃− θ∗) =

ΠT J∗−1
∑

T
t=1 st(θ

∗)/
√

T , which converges to N(0,J∗−1I∗J∗−1) in distribution by Slutsky’s

theorem and central limit theorem for mixing sequences (cf. Wooldridge (1986)).

Proof (Theorem 3): Denote [c−d,c+d] as c±d for two real scalars c and d.

P (H∗(η) ∈Φ(k1(η; θ̂)± z α

2

√
∂k1(η;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k1(η;θ∗)

∂θ

′
/T ))

= P (k1(η;θ
∗) ∈ k1(η; θ̂)± z α

2

√
∂k1(η;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k1(η;θ∗)

∂θ

′
/T )

= P (k1(η; θ̂)− k1(η;θ
∗) ∈ ±z α

2

√
∂k1(η;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k1(η;θ∗)

∂θ

′
/T )

= P (
√

T (k1(η; θ̂)− k1(η;θ
∗)) ∈ ±z α

2

√
∂k1(η;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k1(η;θ∗)

∂θ

′
),

which converges to 1−α since

√
T (k1(η; θ̂)− k1(η;θ

∗))
d→ N(0,

∂k1(η;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k1(η;θ∗)

∂θ

′
)

by the delta method. (4b) can be proved in the same way. Analogously,

√
T (k′(η; θ̂)− k′(η;θ

∗))
d→ N(0,

∂k′(η;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k′(η;θ∗)

∂θ

′
).

We have

T (k′(η; θ̂)− k′(η;θ
∗))′(

∂k′(η;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k′(η;θ∗)

∂θ

′
)−1(k′(η; θ̂)− k′(η;θ

∗))
d→ χ

2(2),
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where χ2(2) is a random variable with chi-squared distribution of 2 degrees of freedom.

Recall that Γ(η,α) is the set defined as

{O ∈ R2 : T (k′(η; θ̂)−O)′(
∂k′(η;θ∗)

∂θ
J∗−1I∗J∗−1 ∂k′(η;θ∗)

∂θ

′
)−1(k′(η; θ̂)−O)≤ χ

2
α(2)}.

It follows that

P ((H∗(η),F∗(η))′ ∈Φ(Γ(η,α)))

= P (Φ(k′(η;θ
∗)) ∈Φ(Γ(η,α)))

= P (k′(η;θ
∗) ∈ Γ(η,α)),

which converges to 1−α by the preceding argument and (4c) holds.

Proof (Theorem 4): (6a) holds by the same argument as in the proof of Theorem 3. To show

(6b), applying the delta method again, we have

√
T (k(θ̂)− k(θ∗)) d→W ≡ (W1,W2)

′, (10)

where

W ∼ N(0,
∂k(θ∗)

∂θ
J∗−1I∗J∗−1 ∂k(θ∗)

∂θ

′
).

Consider the map F1 : (o1,o2)
′ ∈ R2 7→ o1+o2Φ−1(x)∈C([a,b]), where C([a,b]) is the set of

all continuous real-valued functions on [a,b]. We want to check that F1(·) as a map between

two normed spaces is continuous and linear. For any two vectors õ ≡ (õ1, õ2)
′, ō ≡ (ō1, ō2)

′

in R2 and any real scalar α, we have

F1(õ+ ō) = õ1 + ō1 +(õ2 + ō2)Φ
−1(x)

= õ1 + õ2Φ
−1(x)+ ō1 + ō2Φ

−1(x)

= F1(õ)+F1(ō),
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and

F1(αõ) = αõ1 +αõ2Φ
−1(x)

= α(õ1 + õ2Φ
−1(x))

= αF1(õ),

establishing linearity. For continuity, we have to equip C([a,b]) with some appropriate norm.

As usual, we adopt the supremum norm ‖ f‖∞ ≡ supx∈[a,b] | f (x)|. For the previously defined

õ and ō,

0≤ ‖F1(õ)−F1(ō)‖∞ = sup
x∈[a,b]

|õ1− ō1 +(õ2− ō2)Φ
−1(x)|

≤ |õ1− ō1|+ |õ2− ō2| sup
x∈[a,b]

|Φ−1(x)|

= |õ1− ō1|+ |õ2− ō2|K(a,b)→ 0,

as õ→ ō, since K(a,b) ≡ supx∈[a,b] |Φ−1(x)| is a finite constant. By arbitrariness of ō, F1(·)

is continuous on R2. In order to apply the functional delta method to (10), F1(·) must be

Hadamard-differentiable at k(θ∗) ∈ R2. For this purpose, let {tn} and {hn} be any two con-

verging sequences such that tn→ 0 ∈ R and hn→ h ∈ R2 as n→ ∞. We have

F1(k(θ∗)+ tnhn)−F1(k(θ∗))
tn

=
F1(k(θ∗))+ tnF1(hn)−F1(k(θ∗))

tn
= F1(hn),

which converges to F1(h) by the continuity of F1(·). Thus, F1(·) is Hadamard-differentiable

at k(θ∗) tangentially to R2. According to the functional delta method (cf. Kosorok (2008)),

√
T (F1(k(θ̂))−F1(k(θ∗))) =⇒ F1(W ),

where =⇒ stands for weak convergence. Moreover, the continuous mapping theorem implies
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that

√
T‖F1(k(θ̂))−F1(k(θ∗))‖∞ =⇒‖F1(W )‖∞,

or
√

T sup
x∈[a,b]

|k3(x; θ̂)− k3(x;θ
∗)| d→ sup

x∈[a,b]
|W1 +W2Φ

−1(x)|. (11)

Without loss of generality, let W2 6= 0. The maximizer x∗ for |W1 +W2Φ−1(x)| over [a,b]

satisfies

x∗ =

 a, if − W1
W2
≥ Φ−1(b)−Φ−1(a)

2 +Φ−1(a);

b, otherwise.

Therefore supx∈[a,b] |W1 +W2Φ−1(x)|= max{|W1 +W2Φ−1(a)|, |W1 +W2Φ−1(b)|}. Observe

that

A(a,b)W ∼ N(0,Σ(a,b)).

We have

P ( sup
x∈[a,b]

|W1 +W2Φ
−1(x)| ≤ u)

= P (max{|W1 +W2Φ
−1(a)|, |W1 +W2Φ

−1(b)|} ≤ u)

= P (|W1 +W2Φ
−1(a)| ≤ u, |W1 +W2Φ

−1(b)| ≤ u)

= P (−u≤W1 +W2Φ
−1(a)≤ u,−u≤W1 +W2Φ

−1(b)≤ u)

= Fsup(u;a,b).
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Therefore, Fsup(·;a,b) is the distribution function of supx∈[a,b] |W1 +W2Φ−1(x)|. Finally,

P (∀x ∈ [a,b],y∗(x) ∈Φ(k3(x; θ̂)± fα√
T
))

= P (∀x ∈ [a,b],k3(x;θ
∗) ∈ k3(x; θ̂)± fα√

T
)

= P (∀x ∈ [a,b], |k3(x; θ̂)− k3(x;θ
∗)| ≤ fα√

T
)

= P (
√

T sup
x∈[a,b]

|k3(x; θ̂)− k3(x;θ
∗)| ≤ fα),

which converges to 1−α by (11). (The measurability of supx∈[a,b] |k3(x; θ̂)− k3(x;θ∗)| can

be argued from Appendix C of Pollard (1984)).

Proof (Theorem 5): (8) is a trivial application of the delta method.
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